Clickhouse-建表优化
[toc]
# 建表优化
# 数据类型优化
# 时间字段的类型
建表时能用数值型或日期时间型表示的字段就不要用字符串,全 String 类型在以 Hive为中心的数仓建设中常见,但 ClickHouse 环境不应受此影响。
虽然 ClickHouse 底层将 DateTime 存储为时间戳 Long 类型,但不建议存储 Long 类型,因为 DateTime 不需要经过函数转换处理,执行效率高、可读性好。
create table t_type2(
id UInt32,
sku_id String,
total_amount Decimal(16,2) ,
create_time Int32
) engine =ReplacingMergeTree(create_time)
partition by toYYYYMMDD(toDate(create_time)) –-需要转换一次,否则报错
primary key (id)
order by (id, sku_id);
2
3
4
5
6
7
8
9
# 空值存储类型
官方已经指出 Nullable 类型几乎总是会拖累性能,因为存储 Nullable 列时需要创建一个额外的文件来存储 NULL 的标记,并且 Nullable 列无法被索引。因此除非极特殊情况,应直接使用字段默认值表示空,或者自行指定一个在业务中无意义的值(例如用-1 表示没有商品ID)。
CREATE TABLE t_null(x Int8, y Nullable(Int8)) ENGINE TinyLog;
INSERT INTO t_null VALUES (1, NULL), (2, 3);
SELECT x + y FROM t_null;
2
3
查询结果
:) SELECT x + y FROM t_null;
SELECT x + y
FROM t_null
Query id: 13f4badf-bddf-4fcf-95a1-ca027a88f857
┌─plus(x, y)─┐
│ ᴺᵁᴸᴸ │
│ 5 │
└────────────┘
2 rows in set. Elapsed: 0.004 sec.
2
3
4
5
6
7
8
9
10
11
12
13
在存储路径查看存储文件
t_null # ll
total 16
-rw-r----- 1 clickhouse clickhouse 91 Nov 15 13:36 sizes.json
-rw-r----- 1 clickhouse clickhouse 28 Nov 15 13:36 x.bin
-rw-r----- 1 clickhouse clickhouse 28 Nov 15 13:36 y.bin
-rw-r----- 1 clickhouse clickhouse 28 Nov 15 13:36 y.null.bin
2
3
4
5
6
# 分区和索引
分区粒度根据业务特点决定,不宜过粗或过细。一般选择按天分区,也可以指定为 Tuple(),以单表一亿数据为例,分区大小控制在 10-30 个为最佳。
必须指定索引列,ClickHouse 中的索引列即排序列,通过 order by 指定,一般在查询条件中经常被用来充当筛选条件的属性被纳入进来;可以是单一维度,也可以是组合维度的索引;通常需要满足高级列在前、查询频率大的在前原则;还有基数特别大的不适合做索引列,如用户表的 userid 字段;通常筛选后的数据满足在百万以内为最佳。
比如官方案例的 hits_v1 表:
……
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
……
2
3
4
visits_v1 表:
……
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
……
2
3
4
# 表参数
Index_granularity 是用来控制索引粒度的,默认是 8192,如非必须不建议调整。
如果表中不是必须保留全量历史数据,建议指定 TTL(生存时间值),可以免去手动过期历史数据的麻烦,TTL 也可以通过 alter table 语句随时修改。
# 写入和删除优化
(1)尽量不要执行单条或小批量删除和插入操作,这样会产生小分区文件,给后台Merge 任务带来巨大压力
(2)不要一次写入太多分区,或数据写入太快,数据写入太快会导致 Merge 速度跟不上而报错,一般建议每秒钟发起 2-3 次写入操作,每次操作写入 2w~5w 条数据(依服务器性能而定)
写入过快报错,报错信息:
1. Code: 252, e.displayText() = DB::Exception: Too many parts(304).
Merges are processing significantly slower than inserts
2. Code: 241, e.displayText() = DB::Exception: Memory limit (for query)
exceeded:would use 9.37 GiB (attempt to allocate chunk of 301989888
bytes), maximum: 9.31 GiB
2
3
4
5
处理方式:
“ Too many parts 处理 ” :使用 WAL 预写日志,提高写入性能。
in_memory_parts_enable_wal 默认为 true
在服务器内存充裕的情况下增加内存配额,一般通过 max_memory_usage 来实现
在服务器内存不充裕的情况下,建议将超出部分内容分配到系统硬盘上,但会降低执行速度,一般通过 max_bytes_before_external_group_by、max_bytes_before_external_sort 参数来实现。
# 常见配置
配置项主要在 config.xml 或 users.xml 中, 基本上都在 users.xml 里
- config.xml 的配置项
https://clickhouse.tech/docs/en/operations/server-configuration-parameters/settings/
- users.xml 的配置项
https://clickhouse.tech/docs/en/operations/settings/settings/
# CPU 资源
配置 | 描述 |
---|---|
background_pool_size | 后台线程池的大小,merge 线程就是在该线程池中执行,该线程池 |
background_schedule_pool_size | 执行后台任务(复制表、Kafka 流、DNS 缓存更新)的线程数。默 认 128,建议改成 cpu 个数的 2 倍(线程数)。 |
background_distributed_schedule_pool_size | 设置为分布式发送执行后台任务的线程数,默认 16,建议改成 cpu个数的 2 倍(线程数)。 |
max_concurrent_queries | 最大并发处理的请求数(包含 select,insert 等),默认值 100,推荐 150(不够再加)~300。 |
max_threads | 设置单个查询所能使用的最大 cpu 个数,默认是 cpu 核数 |
# 内存资源
配置 | 描述 |
---|---|
max_memory_usage | 此参数在 users.xml 中,表示单次 Query 占用内存最大值,该值可以设置的比较大,这样可以提升集群查询的上限。保留一点给 OS,比如 128G 内存的机器,设置为 100GB。 |
max_bytes_before_external_group_by | 一般按照 max_memory_usage 的一半设置内存,当 group 使用内存超过阈值后会刷新到磁盘进行。因为 clickhouse 聚合分两个阶段:查询并建立中间数据、合并中间数据,结合上一项,建议 50GB。 |
max_bytes_before_external_sort | 当 order by 已使用 max_bytes_before_external_sort 内存就进行溢写磁盘(基于磁盘排序),如果不设置该值,那么当内存不够时直接抛错,设置了该值 order by 可以正常完成,但是速度相对存内存来说肯定要慢点(实测慢的非常多,无法接受)。 |
max_table_size_to_drop | 此参数在 config.xml 中,应用于需要删除表或分区的情况,默认是50GB,意思是如果删除 50GB 以上的分区表会失败。建议修改为 0,这样不管多大的分区表都可以删除。 |
# 存储
ClickHouse 不支持设置多数据目录,为了提升数据 io 性能,可以挂载虚拟卷组,一个卷组绑定多块物理磁盘提升读写性能,多数据查询场景 SSD 会比普通机械硬盘快 2-3 倍。