Spark foreachRDD的正确使用
常出现的使用误区:
**误区一:**在driver上创建连接对象(比如网络连接或数据库连接)
如果在driver上创建连接对象,然后在RDD的算子函数内使用连接对象,那么就意味着需要将连接对象序列化后从driver传递到worker上。而连接对象(比如Connection对象)通常来说是不支持序列化的,此时通常会报序列化的异常(serialization errors)。因此连接对象必须在worker上创建,不要在driver上创建。
dstream.foreachRDD { rdd =>
val connection = createNewConnection() // 数据库连接在driver上执行
rdd.foreach { record =>
connection.send(record) // 在worker上执行
}
}
1
2
3
4
5
6
2
3
4
5
6
**误区二:**为每一条记录都创建一个连接对象
通常来说,连接对象的创建和销毁都是很消耗时间的。因此频繁地创建和销毁连接对象,可能会导致降低spark作业的整体性能和吞吐量。
dstream.foreachRDD { rdd =>
rdd.foreach { record =>
val connection = createNewConnection() //每插入一条数据,创建一个连接
connection.send(record)
connection.close()
}
}
1
2
3
4
5
6
7
2
3
4
5
6
7
比较正确的做法是:对DStream中的RDD,调用foreachPartition,对RDD中每个分区创建一个连接对象,使用一个连接对象将一个分区内的数据都写入数据库中。这样可以大大减少创建的连接对象的数量。
**正确做法一:**为每个RDD分区创建一个连接对象
dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val connection = createNewConnection()
partitionOfRecords.foreach(record => connection.send(record))
connection.close()
}
}
1
2
3
4
5
6
7
2
3
4
5
6
7
**正确做法二:**为每个RDD分区使用一个连接池中的连接对象
dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
// 从数据库连接池中获取连接
val connection = ConnectionPool.getConnection()
partitionOfRecords.foreach(record => connection.send(record))
ConnectionPool.returnConnection(connection) // 用完以后将连接返 回给连接池,进行复用
}
}
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
上次更新: 2023/03/10, 16:49:38